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Finger Coordination Under Artificial Changes in Finger Strength
Feedback: A Study Using Analytical Inverse Optimization

Jaebum Park, Vladimir M. Zatsiorsky, Mark L. Latash
Department of Kinesiology, the Pennsylvania State University, University Park.

ABSTRACT. A recently developed method of analytical inverse
optimization (ANIO) was used to compute cost functions based on
sets of experimental observations in 4-finger pressing tasks with
accurate total force and moment production. In different series,
feedback on total force and moment was provided using the index
finger force at its value, doubled, or halved. Finger force data across
different force—moment combinations formed a plane. This allowed
reconstructing cost functions as 2nd-order polynomials with linear
terms. Changes in the coefficients of the cost function across the 3
series allowed the authors to offer a biomechanical interpretation
related to constraints on finger forces with different lever arms.
ANIO allows the authors to describe preferred regions within the
space of solutions for redundant tasks in terms of cost functions.

Keywords: ANIO approach, finger, force, redundancy, inverse op-
timization

In multidigit tasks, the number of task constraints is typ-
ically smaller than the number of fingers (Zatsiorsky &
Latash, 2008). As a result, an infinite number of finger force
combinations can be used to solve any task. This is an exam-
ple of the problem of motor redundancy (Bernstein, 1967).
One commonly used approach to such problems is optimiza-
tion: It is assumed that the controller selects from an infinite
set a solution that minimizes a particular cost function. Most
studies applied this method using cost functions that rep-
resented educated guesses by the researchers (e.g., Nelson,
1983; Prilutsky, 2000; Rosenbaum, Meulenbroek, Vaughan,
& Jansen, 2001).

Recently, a new method was introduced, Analytical In-
verse Optimization (ANIO), which allows reconstructing a
cost function based on a set of experimental observations
(Terekhov, Pesin, Niu, Latash, & Zatsiorsky, 2010), not on
the researcher’s intuition. In a previous study, we applied this
method to four-finger pressing tasks that required accurate
production of various combinations of the total force (Fror)
and total moment of force (Mtor); the same ranges of Mtor
for each Fror were used (Park, Zatsiorsky, & Latash, 2010).
The reconstructed cost function was a second-order polyno-
mial with essentially nonzero linear terms. The coefficients
at the second-order terms were all positive, larger for the in-
dex and little fingers. The coefficients at the first-order terms
for the index and little fingers were negative, whereas they
were positive for the middle and ring fingers.

High positive coefficients in an additive cost function im-
ply that the use of that finger force is discouraged (i.e., smaller
finger forces can be used to arrive at the same value of the
cost function). Negative coefficients imply that the use of
that finger force in encouraged because applying more force
by that finger decreases the cost function value. In a cost

229

function that includes the quadratic and linear terms, the
linear terms would dominate at relatively low forces while
quadratic terms would dominate at high forces. Because the
same range of Mot was used for different Fror, at low Fror
using fingers with large lever arms (index and little) was nec-
essary for high Mror values. In contrast, at high Fror, using
fingers with large lever arms could lead to excessive Mtor.
Then, fingers producing moment of force in the opposite
direction may have to produce considerable force (moment
antagonist; see Zatsiorsky, Gregory, & Latash, 2002), which
is a wasteful strategy.

To test whether finger coordination is driven by this rel-
atively simple biomechanical interpretation, we performed
a study in which the subjects performed identical sets of
tasks (the same {Fror; Mrtor} combinations) while the in-
dex finger force was used to compute Fror and Mor either
using the actual force (veridical) or the force multiplied by
two (twice as strong, 2Fy), or the force divided by two (half
as strong, 0.5F; a manipulation similar to the one used in
Latash, Gelfand, Li, & Zatsiorsky, 1998). We hypothesized
that (a) the ANIO method would be able to reconstruct cost
functions in all conditions; (b) the pattern of the cost function
(a quadratic function with linear terms) would be preserved,
and only the coefficients would vary; (c) in the 2F; condi-
tion, the coefficients at quadratic terms for the middle, ring,
and little fingers would be reduced (their use is encouraged
as compared to the index finger), whereas they would be
increased in the 0.5F; condition; and (d) the coefficients at
linear terms for the index and little fingers (with large lever
arms) would be relatively increased in the 2F; condition and
reduced in the 0.5F; condition.

Method

Subjects

Seven right-handed male subjects took part in the study.
Their mean age was 29.86 + 2.41 years, their mean height
was 177.14 £ 6.26 cm, and their mean weight was 69.71 £+
7.39 kg. All subjects were healthy, without a previous his-
tory of neuropathies or traumas to their upper extremities.
All subjects signed a consent form according to the proce-
dures approved by the Office for Research Protection of the
Pennsylvania State University.

Correspondence address: Mark L. Latash, Department of Kine-
siology, Rec. Hall-268N, the Pennsylvania State University, Univer-
sity Park, PA 16802, USA. e-mail: mll11@psu.edu



J. Park, V. M. Zatsiorsky, & M. L. Latash

Apparatus

Four force sensors (Nano-17, ATI Industrial Automation,
Garner, NC) were used to measure finger pressing forces (i.e.,
normal forces). The sensors were placed on the panel (140 x
90 x 5 mm) with four slots, which allowed adjusting sensor
positions according to the individual hand and finger lengths
of each subject. The distance between the slots was 3.0 cm in
the medialateral direction. The panel was mechanically fixed
to the immovable table. The sampling frequency was set at
200 Hz.

Procedures

The subjects sat in a chair facing the computer screen and
positioned their right upper arm on a wrist-forearm brace that
was fixed to the table. The forearm was held stationary with
Velcro straps. The subjects placed the right hand fingertips on
the sensor centers and kept the fingertips in contact with the
sensors at all times. A wooden piece was placed underneath
the subject’s right palm to ensure a constant configuration
of the hand and fingers. The subjects were free to select a
comfortable position of the thumb. The experiment consisted
of two maximal voluntary contraction (MVC) tasks and two
sessions of force-moment production tasks.

The MVC tasks the included four-finger maximal volun-
tary contraction (MVCpyr) and index finger MVC (MVCy)
tasks. During each task, the subjects were instructed to pro-
duce maximal force by either all four fingers or the index fin-
ger only within 3 s. The peak force during this time interval
was measured and used to determine target force and mo-
ment magnitudes in the following force-moment production
tasks. For the index finger MVC (MV()) task, the subjects
were asked to keep all the fingers on the sensors, while not
paying attention to possible force productions by the other
fingers of the hand.

Session 1: Force—Moment Production

The subjects were asked to produce various combinations
of steady-state levels of total normal force (Fror) and mo-
ment of normal force (Mtor) simultaneously as accurately
as possible; Mtor into pronation (PR) or supination (SU)
was computed as a linear function of normal finger forces
multiplied by the lever arms with respect to the midpoint
between the middle and ring fingers. Fror and Myor were
displayed on the computer screen along the vertical and hori-
zontal axis, respectively. The subjects were given 4 s to reach
the target values of Fror and Mot as accurately as possible
and maintain these values for at least 1.5 s. The force tar-
get levels included 20, 25, 30, 35, 40, 45, 50, 55, and 60%
of MVCpyre (9 levels). The moment target levels included
2.0PR, 1.5PR, 1.0PR, 0.5PR, OPR, 0.5SU, 1.0SU, 1.5SU,
and 2SU (9 levels). The product of 7% of MVC; by the lever
arm of the index finger (d; = 4.5 cm) was taken as a unit of
Mror (1PR or —1SU). Each subject performed a total of 81
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trials (9 levels of forces x 9 levels of moments x 1 trial =
81 trials) during Session 1.

Session 2: Force—Moment Production With Scaled Feedback

Session 2 was identical to Session 1, with only slight mod-
ification. The computed values of Fror and Mtor were ar-
tificially computed using the index finger force multiplied
by 2 (2F}) or divided by 2 (0.5F}). As in Session 1, there
were 81 experimental conditions for each of the scaled feed-
back conditions. Thus, each subject performed a total of 162
trials during Session 2. Before staring Session 2, the sub-
jects were explicitly told how the force-moment feedback
was going to be distorted. They had sufficient practice trials
(about 15-20 trials over 10 min of practice for each of the
2F; and 0.5F; conditions) to be familiarized with the scaled
feedback condition. A 30-s break was given between trials
to avoid fatigue throughout the experiment. The order of
{Fror, Mtor} combinations was randomized. For Sessions
1 and 2, average Fror and Mot over 1.5 s in the middle
of the 4 s interval were displayed immediately at the end
of each trial to check the performance error from the pre-
scribed values. If the performance error of either Fror or
Mot exceeded the criteria—(/(Fror — FTarge[)2 > 0.02 x
MV Cimres (Mror — Mrarger)* > 0.2 x 1SU)—the trial
was rejected and performed again. This happened in 26 out
of a total of 1701 trials across all subjects and conditions.

Data Analysis

The data were digitally low-pass filtered with a zero-lag,
fourth-order Butterworth filter at 5 Hz. The actual finger
forces, not scaled forces, were used for further analysis in
Sessions 1 and 2. The actual data from Sessions 1 and 2
were averaged over 1.5 s in the middle of the time period (4
s) where steady-state values of force and moment were ob-
served, and these average data were used to apply the ANIO
method. First, principal component analysis (PCA) was per-
formed on the steady-state finger force data across all the tri-
als within each session separately (veridical, 2F;, and 0.5Fy).
In all subjects and three conditions, the amount of variance
explained by the first two principal components (PCs) was
over 90% (see Results section); hence, we assumed that ex-
perimental observations were confined to a two-dimensional
plane in the four-dimensional force space for all three con-
ditions. This indicates that the cost functions could feasibly
be quadratic, which follows the Lagrange principle for the
inverse optimization problem (Terekhov et al., 2010).

J = %lei(F,-)%[Z(w,-)E (1

in which i = {index, middle, ring, and little}. For the com-
putational details of the ANIO method, see Terekhov et al.
(2010) and Park et al. (2010).
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The quadratic coefficient for the index finger, kjug., was
set at 1 across all conditions (see Park et al., 2010). If all the
coefficients at the second-order terms are positive, the func-
tion complies with the assumption of the objective function
minimization (Terekhov et al., 2010). Further, the dihedral
angle between the plane of optimal solutions (obtained us-
ing the computed cost function for the same sets of task
constraints) and the plane determined by the experimental
observations was computed in order to quantify how well
the cost-function from the ANIO predicted the experimental
observation (smaller angle = better prediction). Further, the
changes in the values of the second- and the first-order coef-
ficients (G2 and G1, respectively) were computed in order to
quantify the changes of the ANIO coefficients with changes
in the index finger force gain as compared to the veridical
condition:

Gl’j = w’j —w 2)
G2, =k} — k, 3)

in which j = {2F}, 0.5F,}, and k, are the coefficients from
the veridical feedback condition. Note that G2"4¢* is always
0 because the second-order coefficients for the index finger
force were always set at 1.

Statistics

Repeated measures analyses of variance (ANOVAs) with
the factors Fingers and Condition were used to explore (a)
how the dihedral angle between the optimal plane and the data
plane was affected by the different feedback conditions (one-
way repeated measures ANOVA) and (b) how the loadings of
finger forces within each PC, G1, and G2 values were affected
for different fingers by the manipulation of the feedback.
Tukey’s honestly significant difference tests and pairwise
contrasts were used to explore significant effects at p <.05.

Results

Principal Component Analysis Results

The principal component analysis (PCA) was performed
on each set of 81 observations (finger forces for the {Fror;
Mot} combinations) in each of the three feedback condi-
tions (veridical, 2F;, and 0.5F) and each subject separately.
The first two PCs accounted for over 90% of the total vari-
ance in the finger force space for each of the three feedback
conditions, and there was no significant difference among
the conditions. Hence, the experimental observations were
always confined to a two-dimensional plane in the four-
dimensional force space. The loadings of all four finger
forces in PC1 were large (>0.7) with the same sign (Fig-
ure 1A). In PC2, the loadings of the index and little finger
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FIGURE 1. Fisher’s z-transformed loading factors of (A)
PC1 and (B) PC2 for the three feedback conditions: veridical,
2Fy, and 0.5F;. The average z-transformed PC loadings of
individual finger forces are presented with standard error
bars. I, M, R, and L stand for index, middle, ring, and little
finger, respectively. PC = principal component.

forces were larger than those of the middle and ring fin-
ger forces for all three conditions (Figure 1B). Also, the
signs of the loadings for the index and middle finger forces
were opposite to those for the ring and little finger forces.
A two-way ANOVA (Condition x Fingers) on Fisher z-
transformed PC loadings showed only effects of fingers,
PC1: F(3, 18) = 33.87, p < .001; PC2: F(3, 18) = 62.95,
p < .001, but no significant differences across the three con-
ditions and no Condition x Fingers interactions.

ANIO Results

Application of the ANIO method allowed reconstructing
quadratic cost functions with linear terms for each subject.
To check the goodness of fit, the reconstructed cost functions
were used to generate artificial data sets for each subject and
condition; each data set formed a plane (plane of optimal
solutions). The dihedral angle was defined as the angle be-
tween the planes of optimal solutions and the plane spanned
by the two PCs based on the experimental observation. The
dihedral angle for the veridical condition was 1.56° &+ 1.77°,
which was significantly smaller than in the other two condi-
tions (2Fy: 4.57° 4 3.28°; 0.5F;: 5.42° 4 4.30°). A one-way
ANOVA confirmed the main effect of condition, F(2, 12) =
4.25, p < .05.
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FIGURE 2. (A) The second- (k) and (B) first-order (w) coefficients for the three feedback conditions for a representative subject.
(C) GI and (D) G2, the indexes of changes in w and k, respectively, in the 2F; and 0.5F; conditions as compared to the veridical
condition. The average values across subjects are presented with standard error bars. I, M, R, and L indicate index, middle, ring, and
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Figures 2A and 2B show a typical pattern of the second-
(k) and first-order (w) coefficients for the three conditions for
a representative subject. Note that k values for all the fingers
were always positive; kK magnitudes for the middle, ring, and
little fingers decreased in the 2F; condition and increased
in the 0.5F; condition (Figure 2A). The w coefficients de-
creased in magnitude for all the fingers under the 2F; and
0.5F; conditions.

Figures 2C and 2D show the indices of changes in w and
k (GI and G2; see Method section) in the 2F; and 0.5F;
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conditions compared to the veridical condition. By definition,
for the index finger G2 = 0. For the other three fingers,
G2 were all positive for the 2F; condition, whereas they
were all negative for the 0.5F; condition. In addition, GZZIF"Ig
and G245}/ were significantly larger than G253/ (Figure
2C). These results were supported by a two-way ANOVA
on G2 that showed significant main effects of Condition,
F(1, 6) = 43.99, p < .005, and Fingers (3 levels: middle,
ring, and little fingers), F(2, 12) = 8.43, p < .01, with a
significant Condition x Fingers interaction, F(2, 12) = 9.26,

Journal of Motor Behavior



p < .005). The interaction reflected the fact that G2 values
differed among fingers under the 2F; condition but not 0.5F;.
There were no significant effects in a similar ANOVA run on
G1, likely due to the large standard deviations of G/ under
the 0.5F; condition (Figure 2D). A one-way ANOVA on G/
for the 2F; condition with fingers as the factor (four levels:
I, M, R, and L) showed a significant main effect, F(3, 18) =
5.17, p < .05. The pairwise comparisons confirmed G/, >
GIy. No such effects were seen for the 0.5F; condition.

Discussion

Recent approaches to the problem of motor redundancy
form two groups. One group focuses on the variability of so-
lutions typical of natural, multielement tasks and explores
patterns of covariation among elemental variables across
repetitive trials. Among major recent developments within
this group are the uncontrolled manifold (UCM) hypothe-
sis (Scholz & Schoner, 1999) and the notion of synergies
(Latash, 2010; Latash, Scholz, & Schoéner, 2007). The other
group of approaches focuses on patterns of involvement of
elemental variables that are consistent across repetitive trials.
Optimization is one of the commonly used techniques within
this group (reviewed in Prilutsky, 2000). The two approaches
emphasize two facets of the problem of motor redundancy:
(a) what solution to select and (b) how to make this solution
stable against unavoidable intrinsic and extrinsic perturba-
tions. We recently used techniques from both groups (ANIO
and UCM analyses) to analyze the same multifinger pressing
task and suggested that the ideas of optimization and of syn-
ergies are not contradictory but complementary (Park et al.,
2010). Note that one of the approaches, the UCM-based syn-
ergy analysis, involves analysis of elemental variables during
repetitive trials to the same target, whereas the other approach
(optimization, in particular ANIO) is based on analysis of tri-
als to different targets.

The present study used the recently introduced ANIO
method (Terekhov et al., 2010), which allows reconstruct-
ing cost functions based on a set of experimental observa-
tions of a redundant system. The method was used previously
(Park et al., 2010; Terekhov et al.) and resulted in consistent
across-subjects forms of the cost function (see Equation 1
in Method section). No interpretation of the function was
offered in those studies. The main purpose of our study was
to check a particular, biomechanical interpretation of the
cost function using a manipulation originally suggested by
Latash et al. (1998): making one finger artificially stronger or
weaker. Based on that study, we informed the subjects on the
manipulation of the feedback and gave them ample practice
to get used to the new conditions.

Overall, the results support applicability of the ANIO
method as well as using a quadratic cost function with linear
terms for the multifinger pressing tasks. First, in all subjects
and all conditions, the data were confined to a plane (PCA
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results). This result, in combination with the Lagrange prin-
ciple, allowed using the functional form of the cost function
presented in Equation 1. The loading factors at the first two
PCs did not differ significantly across conditions, which sug-
gests that the data distributions were confined to similarly
oriented planes. Second, using the cost function for direct
optimization matched the data well: The two planes, optimal
and experimental, were close to being parallel. Although the
dihedral angle increased in the nonveridical conditions, its
values were still relatively low (on average, about 5°). The
increase in the dihedral angle could result from the unusual
nature of the nonveridical conditions. Hence, on the whole
we may confirm that the ANIO method and its results are
robust with respect to the distorted visual feedback, which
confirms our first and second hypotheses.

The offered interpretation of the cost function has been
mainly supported by the data. Indeed, in the 2F; condition,
using the artificially stronger finger with the large lever arm
to produce large forces would result in large moment of force
values. Because the Moy range was limited (the same for
low and high Fror), this is a suboptimal strategy. This was
reflected in relatively low coefficients at the second-order
terms (k) for the other three fingers. Note that a lower co-
efficient in the cost function implies that using high values
of force by that particular finger is relatively less costly (en-
couraged). An opposite trend was seen in the 0.5F; condition.
With respect to the coefficients at the first-order terms (w),
the results are more ambiguous. At low Fror, when the first-
order terms are expected to dominate, producing the same
range of Mo is facilitated by using finger forces with larger
lever arms. As a result, w values for the index and little
fingers are negative (encouraged). Making the index finger
stronger is expected to scale down its involvement (for the
same Mot values); higher w values were indeed observed
in the experiments. There was a similar increase in w for the
little finger, whose force was used veridically. We can offer
only a tentative interpretation assuming that it was due to the
symmetrical involvement of the two fingers with the largest
lever arms. Thus, the third and fourth hypotheses have also
been supported by the results.

In redundant motor tasks, theoretically, very large sub-
spaces in the space of elemental variables are available, lim-
ited by anatomical and physiological constraints, which are
equally able to solve the tasks. However, in each particular
task humans use only a relatively small region within this po-
tentially available subspace. Several approaches linked this
choice to stability of solutions, particularly with respect to
possible unavoidable variations in the magnitudes of elemen-
tal variables (Miiller & Sternad, 2004; Scholz & Schoner,
1999). Our approach is different. We do not single out a pri-
ori a specific feature of performance (e.g., stability, energy
expenditure, fatigue) and assume that this feature dictates
the choice of an area from which solutions are selected. An
objective mathematical method is used to produce a descrip-
tion of this area (in terms of a cost function) based on actual
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performance. We see this as a major advantage of the ANIO
approach.

The main theorem of the ANIO approach, the theorem of
uniqueness, is formulated for an infinite number of precise
experimental points. In experiments, the data cover a lim-
ited subspace and are also affected by noise. Given these
two factors, the ANIO method can only ensure that the com-
puted cost function is close to the true one (assuming that a
true one exists). In all subjects and all conditions, the data
tended to form a plane, but they deviated from a perfect
plane. As a consequence, it cannot be claimed that the cost
function is quadratic, only that it can be well approximated
by a quadratic cost function.

Consider the following example (suggested by an anony-
mous reviewer). Imagine that a similar set of four-finger tasks
is performed by a hypothetical controller that tries to min-
imize a cost function representing the sum of finger forces
cubed, J, = Y, 7. If the same set of constraints as in our
experiment is applied and an optimal data set is defined, PCA
on that surrogate data set shows that 99.99% of the data are
explained by the first two PCs. Thus, high planarity of the
data by itself does not ensure that the true cost function is
quadratic. However, this result implies that the cost function
can be well approximated by a quadratic function within the
range of available data. Figure 3 shows the values of two
cost functions, J (as in our study) and J;, over a range of
forces. For a given force magnitude, values for nine different
moment of force magnitudes are shown; they do not differ
by much. Note that the computed points for the two analyses
and the two curves are nearly on top of each other. Practi-
cally, over the studied ranges of finger forces the values of
the two cost functions look indistinguishable. So, J may not
be the true function but it approximates the true function very
closely.

Over the studied ranges of finger forces, many cost func-
tions can potentially produce planar distributions of com-
puted values. However, some of these planes coincide with
the experimentally observed one, whereas others do not. To
illustrate this point, we applied the mentioned cubic cost
function to compute the plane of optimal solutions for our
task constraints and computed the dihedral angle between
the plane of optimal solutions and the plane of actual ob-
servations for each subject. For the cubic function the angle
was 20.89° & 8.57°, whereas it was only 1.56° & 1.77° for
the quadratic function defined by the ANIO method. Another
metric that can be used to compare different cost functions is
the root mean square deviation of the computed values from
the observed ones. Recently, we compared several traditional
cost functions to the ones generated by the ANIO approach
in their ability to fit experimentally observed data sets for a
similar force-moment production task. The ANIO approach
generated cost functions with significantly better fit to the ex-
perimental data as compared to the traditional cost functions
(unpublished).

An important lesson from this example (see also Terekhov
et al., 2010; Terekhov & Zatsiorsky, 2011) is that—due to
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FIGURE 3. The cost function values for different mag-
nitudes of total force (and nine moment of force values)
for two cost functions, J = 1 ¥ k;(F,)* + >, (w;)F; and
J, =Y, . TheJ; function was applied to produce optimal
solutions for a set of task constraints similar to those used
in the experiment (black rhombus; thick, dashed regression
line). Further, the ANIO method was applied to this surro-
gate data set to compute the J function (gray circles; thin
regression line). Note that despite the different functional
forms, both cost functions have nearly identical values over
the range of forces (the symbols overlap, and the two re-
gression lines are on top of each other). The graph shows
the data for assumed MVC values of 38 N and 72 N for the
index finger and four-finger tasks, respectively (close to the
averaged data in our experiment). For each force magnitude,
cost values are shown (in arbitrary units) for nine moment
of force magnitudes; those cost values do not differ by much
from each other.

the limited range of data and nonzero noise—the ANIO
method applied to data sets is not expected to produce the
true cost function, only a function that approximates the true
one closely. This should not be viewed as a major flaw of
the approach but rather as a limitation inherent to the idea
of optimization. Indeed, most researchers would probably
agree that motor performance is not defined by a single cost
function applicable across tasks and ranges of performance
variables, and that most cost functions considered in previ-
ous studies are limited in their ability to describe the data
precisely (see reviews in Prilutsky, 2000; Rosenbaum et al.,
2001).

We are presently only making the first steps toward un-
derstanding the mechanical (and potentially physiological
and psychological) meaning of the cost functions recon-
structed using the ANIO method. This study makes us opti-
mistic with respect to further development and applications
of this method. The hypotheses formulated were supported
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statistically and the overall pattern of the results is consistent
with the offered interpretation of the cost function. However,
the large variability across subjects suggests that mechanics
is not the only factor that defines patterns of finger coordina-
tion in such tasks. Our next plans are to explore sensitivity
of the ANIO method to changes in finger coordination that
happen with more physiological changes such as those that
accompany fatigue and healthy aging (cf. Kapur, Zatsiorsky,
& Latash, 2010; Singh, SKM, Zatsiorsky, & Latash, 2010).
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