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and moment. The ANIO approach revealed significantly 
larger deviations of the experimental data planes from an 
optimal plane for the patients compared to the control sub-
jects. The synergy indices computed for total force stabi-
lization were significantly higher in the control subjects 
compared to the patients; this was not true for synergy indi-
ces computed for moment of force stabilization. The differ-
ences in the synergy indices were due to the larger amount 
of variance that affected total force in the patients, while 
the amount of variance that did not affect total force was 
comparable between the groups. We conclude that the basal 
ganglia play an important role in both components of syn-
ergies reflecting optimization of the sharing patterns and 
stability of performance with respect to functionally impor-
tant variables.

Keywords  Parkinson’s disease · Synergy · Finger · 
Uncontrolled manifold hypothesis · Analytical inverse 
optimization

Introduction

Parkinson’s disease (PD) is a brain disorder associated with 
a lack of dopamine production by the substantia nigra of 
the basal ganglia. Neural circuits involving the basal gan-
glia have been strongly implicated in motor coordination, 
primarily based on the profound deficits of motor function 
in patients with basal ganglia disorders (reviewed in Fahn 
and Jankovic 2007). The scheme based on distributed pro-
cessing modules in the brain suggested by Houk (2005) 
considers the cortico-basal-thamalo-cortical circuit as one 
of the two main neural pathways involved in the coordi-
nation of natural movements (we do not address the other 
pathway involving trans-cerebellar loops in this paper).

Abstract  We explored the role of the basal ganglia in two 
components of multi-finger synergies by testing a group of 
patients with early-stage Parkinson’s disease and a group 
of healthy controls. Synergies were defined as co-varied 
adjustments of commands to individual fingers that reduced 
variance of the total force and moment of force. The frame-
work of the uncontrolled manifold hypothesis was used to 
quantify such co-variation patterns, while average perfor-
mance across repetitive trials (sharing patterns) was ana-
lyzed using the analytical inverse optimization (ANIO) 
approach. The subjects performed four-finger pressing 
tasks that involved the accurate production of combinations 
of the total force and total moment of force and also repeti-
tive trials at two selected combinations of the total force 
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At any level of description, the system for production 
of natural movements is redundant (Bernstein 1947). This 
means that its elements produce more variables (elemental 
variables) compared to the number of constraints associ-
ated with everyday tasks. Two approaches have been used 
to address the issue of motor redundancy. One of them is 
based on ideas of optimization: The central nervous system 
is assumed to facilitate patterns of elemental variables that 
minimize a particular cost function (reviewed in Prilutsky 
and Zatsiorsky 2002). The other approach is based on the 
principle of motor abundance (Gelfand and Latash 1998: 
Latash 2012), which assumes that families of solutions 
are facilitated that equally are capable of solving the task, 
and elemental variables are organized to produce co-varied  
adjustments that stabilize (reduce variance of) impor-
tant performance variables. Such organizations have been 
addressed as synergies (Latash et  al. 2007; Latash 2008). 
Although traditionally the two approaches have been con-
sidered separately, several groups have tried to combine the 
idea of abundance with ideas of optimal control (Todorov 
and Jordan 2002; Diedrichsen et al. 2010; Park et al. 2010).

 Over the past years, we have used two methods to quan-
tify changes in multi-finger coordination. One of the meth-
ods is associated with the uncontrolled manifold (UCM) 
hypothesis (Scholz and Schöner 1999; reviewed in Latash 
et al. 2007). This hypothesis assumes that the neural con-
troller organizes a sub-space (which is the UCM) within 
the space of elemental variables corresponding to a desired 
value of an important performance variable and then lim-
its variance (VORT) orthogonal to the UCM; relatively large 
amounts of variance (VUCM > VORT) are allowed within the 
UCM. The relative difference between VUCM and VORT may 
be used as a quantitative index of a synergy stabilizing the 
performance variable. The other method is called analytical 
inverse optimization (ANIO, Terekhov et al. 2010). It uses 
a particular computational method to discover a cost func-
tion based on experimental observations in a subject who 
produces naturally a broad range of task-related variables. 
Further, the cost function is used to compute solutions for 
the same set of tasks. The two solution sets, experimental 
and computed, are compared, and a metric of their close-
ness (D-angle) may be used to estimate how consistently 
the subject follows his or her own optimization principle 
(for more detail see Terekhov and Zatsiorsky 2011; Park 
et al. 2011a, b).

Several studies have reported changes in motor coor-
dination in PD (Bertram et  al. 2005; Fradet et  al. 2009; 
Brown and Almeida 2011; Park et al. 2012). In particular, 
a recent study of early-stage patients with PD indicated a 
significant drop in the index of multi-finger synergy stabi-
lizing total force produced by the four fingers of the hand 
pressing in parallel (Park et  al. 2012). These results were 
obtained while the patients were on their antiparkinsonian 

medications optimized by their movement disorder special-
ist, and their overall performance showed only minor dif-
ferences from that of age-matched healthy controls. These 
findings stood in stark contrast to earlier results reported 
for multi-joint reaching movements performed by cortical 
stroke survivors (Reisman and Scholz 2003). In the latter 
study, the patients showed rather dramatic changes in the 
overall performance, but the synergy index (the relative 
amounts of VUCM and VORT in the total joint configuration 
variance) was similar between the ipsilesional (relatively 
spared) and contralesional (strongly affected) limbs. Taken 
together, these studies suggest that cortical structures may 
be crucial for defining overall patterns of performance, 
while synergies stabilizing those patterns depend more on 
proper functioning of subcortical structures. Consistent 
with this hypothesis, we found that patients with multisys-
tem atrophy-cerebellar type, another movement disorder 
with primary subcortical (cerebellar) dysfunction, also dis-
play a significant drop in the index of multi-finger synergy 
(Park et al. 2013).

In this study, we applied the UCM-based analysis of 
synergies and ANIO to multi-finger force and moment of 
force production tasks in persons with PD. Based on our 
prior study (Park et al. 2012), our first hypothesis was that 
the patients with PD would show significantly smaller indi-
ces of multi-finger synergies computed with respect to both 
total force and total moment of force production. An ear-
lier study showed large differences in synergies stabilizing 
the moment of force in older healthy persons and modest 
differences in force-stabilizing synergies (Olafsdottir et al. 
2007). Thus, our second hypothesis was that PD would be 
associated with particularly profound changes in moment-
stabilizing synergies. In the past, ANIO has shown signifi-
cant changes in the measure of consistency in following an 
optimization principle with relatively mild changes in the 
state of the system for movement production with healthy 
aging (Park et  al. 2011a) and fatigue (Park et  al. 2011b). 
Thus, our third hypothesis was that patients with PD would 
show poor consistency in following an optimization princi-
ple discovered with ANIO.

Methods

Subjects

Eight patients with idiopathic Parkinson’s disease (PD; 
age: 64.25 ±  8.08 year; five males) at Hoehn–Yahr (HY) 
stage I or II and eight age-matched control subjects (CS; 
age: 60.25 ± 10.18 year; three males) participated in this 
study. The patients were selected randomly from a larger 
pool of participants of an ongoing clinical and neuroim-
aging study in which all PD subjects were diagnosed by 
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movement disorders specialists. All participants had a his-
tory of a significant response to dopaminergic replacement 
treatment. PD subjects were tested while on antiparkinso-
nian medications optimized by their movement disorders 
specialist. None of subjects in the CS group had a history 
of neuropathies or traumas to their upper extremities. The 
study protocol followed the Helsinki principles and was 
reviewed and approved by the Pennsylvania State Univer-
sity Hershey Medical Center Institutional Review Board. 
Written informed consent was obtained from all subjects.

Equipment

Four piezoelectric force sensors (Model 208A03, PCB 
Piezotronics Inc., Depew, NY, USA) were used to meas-
ure vertical forces (normal to the surface of the sensors) by 
individual fingers. The sensors were placed into a custom-
ized flat panel (140 ×  90 ×  5  mm), and the top of each 
sensor was covered with sandpaper (300-grit) in order to 
increase the friction. The position of each sensor in the 
forward–backward direction was adjusted according to the 
hand anatomy of individual subject. The distance between 
adjacent sensors was 3.0  cm in the medio-lateral direc-
tion. The four force signals were digitized at 200 Hz with 
a 16-bit resolution (PCI-6225, National Instrument, Austin, 
TX, USA) with a customized LabVIEW program (Lab-
VIEW 8.5, National Instrument, Austin, TX, USA). Matlab 
(Matlab 7.4.0, Mathworks, Inc.) programs were written for 
data processing and analysis.

Experimental procedures

Before the experiments, subjects had a 10–20  min orien-
tation session. During the session, the subjects performed 
enough practice trials to become familiar with the experi-
mental setup and to ensure that they were able to perform 
the tasks. The subjects were tested while sitting in a chair; 
the forearm and wrist were held stationary with a wrist-
forearm brace and Velcro straps on the table. The subjects 
placed the fingertips on the centers of corresponding sen-
sors and were instructed to keep the fingertips on the sen-
sors at all times (Fig.  1a). A wooden piece was placed 
under the palm to ensure the consistent configuration of the 
hand and fingers during the finger force measurement. The 
19-inch computer screen was positioned 0.5 m in front of 
the subject; it was used to set tasks and provide real-time 
feedback. The experiment consisted of maximal voluntary 
contraction (MVC) tasks and accurate total force (FTOT) 
and moment (MTOT) production tasks.

The MVC forces of all four finger together (MVCIMRL) 
and the index finger alone (MVCI) were measured in order 
to scale the task space in the {FTOT, MTOT} production tasks 
according to the individual subject’s finger force strength. 

For each MVC task, each subject performed three consecu-
tive attempts (with 1-min rest intervals), and the highest 
values of MVCIMRL and MVCI over three attempts were 
selected. During these trials, feedback on the total force of 
the instructed finger(s) was provided, and the subject was 
encouraged to press as strongly as possible at any time 
within the 10-s time window.

For the accurate force-moment production tasks, the 
subjects were instructed to produce various combinations 
of {FTOT, MTOT} as accurately as possible. The levels of 
FTOT included 5–45 % of MVCIMRL at 5 % intervals (nine 
levels). Since the panel with the force sensors was fixed to 
the table, there was no actual rotation of the hand and the 
panel. MTOT was computed with respect to the center-point 
between the middle (M) and ring (R) finger sensors assum-
ing lever arms dI = −4.5 cm, dM = −1.5 cm, dR = 1.5 cm, 
dL  =  4.5  cm (I—index, M—middle, R—ring, L—little). 
Note that we used MTOT for a linear function of normal 
finger forces that only approximated the actual moment of 
force; in particular, we did not consider possible changes in 
the coordinates of finger force application and the contribu-
tion of shear forces. In other words, both FTOT and MTOT 
were computed from normal finger forces. As a result, the 
subjects were given two constraints on normal force com-
ponents only. Their sum had to be a number (FTOT) and 
their linear combination multiplied by some coefficients 
(nominal moment arms) had to be another number (MTOT). 
The presence of two constraints is a necessary requirement 
for application of the ANIO method (Terekhov et al. 2010). 

Force sensor(A)

Wooden piece 

MVC Task
FTOT-MTOT

production task
(B)

Force

Time

Target MTOT

Target FTOT

Fig. 1   a The experimental setup. A wooden piece was placed under-
neath the subject’s right palm in order to avoid changes in the con-
figuration of the hand and fingers. b The feedback computer screens 
during the MVC task (left) and accurate total force (FTOT) and total 
moment of force (MTOT) production tasks (right). During each trial 
for the accurate FTOT–MTOT production tasks, the screen showed a tar-
get and a cursor with coordinates corresponding to the current FTOT 
along the vertical axis and MTOT along the horizontal axis
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The actual physical (mechanical) nature of constraints is 
irrelevant as long as they are kept constant over a range 
of values. We address the two constraints as “total force” 
and “total moment of force” only to link them to intuitively 
understandable mechanical variables.

There were 16 levels of MTOT, from 4.0SU to 4.0PR at 
0.5PR intervals; PR—pronation, SU—supination. 1PR was 
defined as the product of 7 % of MVCI by the lever arm of 
the index finger (dI = −4.5 cm) (Park et al. 2010, 2011a, 
b). Table 1 shows the 81 {FTOT, MTOT} combinations. The 
task space formed a triangle. This was done to avoid low 
FTOT and high MTOT combinations to avoid large perfor-
mance errors. On the feedback screen (Fig. 1b), the vertical  
and horizontal axes represented FTOT and MTOT, respec-
tively; each target {FTOT, MTOT} combination was shown as 
a dot. The subjects were asked to reach the target within 6 s 
and maintain the finger force values for at least 1–2 s. The 
cursor showed the computed FTOT and MTOT produced by 
the subjects.

The subjects performed one trial for each {FTOT; MTOT} 
combination in a random order for a total of 81 trials. Using 
ANIO analysis requires that individual trials cover a broad 
range of constraint values. In our case, this meant covering 
a broad range of {FTOT; MTOT} combinations. It is assumed 
that a single cost function is applicable over this broad 
range. Using multiple trials is certainly preferred because 
it allows defining performance for each {FTOT; MTOT} com-
bination more accurately. However, this would also prolong 
the time of the experimental session and could potentially 
lead to fatigue in the patients. Since covering a broad range 
of force-moment values is paramount for ANIO, we asked 
the subjects to perform each task only once for each {FTOT; 
MTOT} combination. We would also like to emphasize that 
the tasks were very simple, without time pressure, and the 
subjects felt comfortable performing them after a few (5–6) 
practice trials. So, we did not expect effects of practice to 
play a major role. Finger forces from these trials were used 
to compute a cost function with the ANIO approach. Two 
sets of {FTOT; MTOT} combinations, {30  % of MVCIMRL, 
2PR} and {30 % of MVCIMRL, 2SU}, were performed 20 
times each by each subject. These sets of trials were used 
to perform analysis of synergies within the UCM hypoth-
esis framework. After each block of five trials, a 20-s break 
was given. The entire experiment for each subject lasted 
approximately 1 h.

Data analysis

Initial data processing

The fourth-order, 5-Hz Butterworth low-pass digital filter 
was applied to the original force data. The filtered finger 
force data from each trial were averaged over 1.5 s in the Ta
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middle of the time period where steady-state values of indi-
vidual finger forces were observed. The steady-state time 
period was identified by visual data inspection. For some of 
further analyses, the task space was divided into six areas, 
and average values of outcome variables were computed 
within each area. The six areas were identified for three 
levels of total force (Low: 10–20 %; Mid: 25–35 %; High: 
40–45 % of MVC) and two levels of total moment (PR and 
SU).

Task constraints

There were two constraints for each trial:

where α indicates a given percentage of MVC (α = 5–45 % 
at 5 % interval).

where d stands for the lever arm; β  =  −4 to 4 at 0.5 
intervals.

The ANIO approach

The ANIO requires knowledge of the surface on which 
the experimental results are mainly located (explained 
in Terekhov et  al. 2010). During the first step, we per-
formed principal component analysis (PCA) on the finger-
force data. The purpose of the PCA analysis was to check 
whether finger force data were indeed confined to a plane. 
PCA was performed on 81 observations for each subject, 
which covered over all {FTOT, MTOT} combinations. The 
Kaiser (1960) criterion was employed to extract the signifi-
cant principal components (PCs), and the percent variance 
explained by the first two PCs was computed.

We assume non-sticking contact between the finger tips 
and force sensors throughout the experiment (i.e., soft-finger 
contact). Therefore, forces could only be positive. The task  
involved two constraints (FTOT and MTOT values) and four 
elemental variables (finger forces). Thus, the solutions of 
this undetermined system were expected to be confined to a 
two-dimensional hypersurface in the four-dimensional fin-
ger force space.

We followed the necessary steps in ANIO as described 
in detail in Terekhov et al. (2010). In particular, we checked 
whether the experimental data lied on a hyperplane (and 
not for instance on a curved hypersurface) and then defined 
the observed hyperplane mathematically as:

where A is a 2 × 4 matrix composed of the transposed vec-
tors of the two lesser PCs obtained from the PCA from the 

(1)FTOT = FI + FM + FR + FL = α · MVCIMRL,

(2)

MTOT = dI · FI + dM · FM + dR · FR + dL · FL

= β · 0.07 · dI · MVCI = β · 1PR

(3)A · FT = b

finger force data. Note that the data points showed devia-
tions from the hyperplane due to the variability of perfor-
mance. Also, the plane computed from Eq. 3 was affected 
by experimental errors.

We found that the desired objective function could be 
expressed as:

where i = {I, M, R, and L}.
The values of the coefficients of the second-order terms 

ki were determined by minimizing the dihedral angle 
between the two planes: the plane of optimal solutions and 
the plane of experimental observations. The values of the 
coefficients of the first-order terms wi were found to corre-
spond to a minimal vector length (w = (wI,wM,wR,wL)T),  
bringing the theoretical and the experimental plane as close 
to each other as possible. All the coefficients were nor-
malized by the square root of the sum of the second-order 
coefficients squared (i.e., by 

√

(k2
I + k2

M + k2
R + k2

L)) for 
across-subjects comparisons.

If the coefficients of the second-order terms are positive, 
the function complies with the assumption of the objec-
tive function minimization. Further, the computed cost 
function was used to generate optimal finger forces for the 
same sets of {FTOT, MTOT} combinations as those used in 
the experiment. The computed data formed a plane in the 
four-dimensional finger force space. The angle between 
this plane of optimal solutions and the plane determined by 
the experimental observations (the dihedral angle, D-angle) 
was computed. This angle can be viewed as a metric of 
goodness-of-fit. It can also be interpreted as an index of 
consistency in following a single objective function: If the 
subjects were always following a single objective function 
over all {FTOT; MTOT} combinations, the angle would be 
very small; if the subjects used different objective func-
tions over different areas of the {FTOT; MTOT} workspace, 
the angle would be expected to increase because the analy-
sis would substitute many different functions with a single 
one.

Synergy analysis

The finger force data were analyzed within the framework 
of the UCM hypothesis (Scholz and Schöner 1999) using 
the sets of 20 trials at the same {FTOT; MTOT} combinations. 
Briefly, two variance components were computed across 
the 20 trials. One of the components (VUCM) did not change 
the average across trial magnitude of the selected perfor-
mance variable, while the other component (VORT) did 
(for details see Latash et al. 2001; Park et al. 2010). VUCM 
and VORT were computed with respect to FTOT, MTOT, and 

(4)J =
1

2

∑

i

ki(Fi)
2 +

∑

i

(wi)Fi
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{FTOT, MTOT} simultaneously as the performance variables. 
Note that in the analyses with respect to FTOT and MTOT, the 
dimensionality of the UCM is 3, while the dimensionality 
of the orthogonal space is 1. In the analyses with respect to 
{FTOT, MTOT}, the dimensionality of both the UCM and the 
orthogonal space is 2.

For each condition and at each point in time, variance 
components were computed using de-meaned force data as 
detailed below: Changes (from the mean) in the force are 
given by the vector df =

[

dfI dfM dfR dfL
]

T, where T is 
a sign of transpose. Changes in the value of the total force 
can be written as a function of df as follows:

where JF =
[

1 1 1 1
]

 and JM =
[

dI dM dR dL

]

 are 
the Jacobians that link infinitesimal changes in finger 
forces with changes in FTOT and MTOT. Similarly, for the 

{FTOT, MTOT} related analysis, JFM =

[

1 1 1 1

dI dM dR dL

]

. 

An orthogonal set of eigenvectors in force space, ei defines 
the sub-space where finger force variations do not alter the 
total force/moment, i.e.,

These eigenvectors spanned the null space of the cor-
responding Jacobians. Then, the mean-free forces df were 
projected onto these directions and summed:

where n = 4 is the number of degrees of freedom of the 
f vector, and p is the number of degrees of freedom of 
the performance variable (p =  1 for the FTOT and MTOT 
related analyses, and p =  2 for the{FTOT, MTOT} related 
analysis). The component orthogonal to the null space is 
given by:

The amount of variance per DOF within the UCM is 
then given by:

This is the variance that does not affect the selected per-
formance variable (FTOT, MTOT, or {FTOT, MTOT}). Simi-
larly, the amount of variance per DOF orthogonal to the 
UCM is given by:

(5A)dFTOT = JF · df

(5B)dMTOT = JM · df

(6)0 = JF · ei; (similarly, 0 = JM · ei; 0 = JFM · ei)

(7)f|| =

n−p
∑

i=1

(

eT
i · df

)

ei

(8)f⊥ = df − f||

(9)VUCM =

∑

|f|||
2

(n − p)Ntrials

(10)VORT =

∑

|f⊥|2

pNtrials

This is the variance that affects that performance vari-
able. Note that VUCM and VORT are normalized per DOF in 
the corresponding spaces.

Further, an index reflecting the relative amounts of VUCM 
and VORT was computed as:

where VTOT stands for the total finger force variance, and 
each variance index is computed per DOF in the corre-
sponding spaces. The index was computed with respect 
to FTOT (ΔVF), MTOT (ΔVM), and {FTOT, MTOT} (ΔVFM). 
Prior to statistical analysis (see later), this index was trans-
formed using a Fisher z-transformation (ΔVz) adapted to 
the boundaries of ΔV.

Statistics

The data are presented as means and standard errors. 
Mixed-design ANOVAs with repeated measure were 
used. For the sets of 81 combinations of {FTOT, MTOT}, 
we explored how the main outcome variables are affected 
by Group (two levels: PD and CS) and by other factors 
such as Finger (four levels: I, M, R, and L), Force (three 
levels: Low, Mid, and High), and Moment (two levels: PR 
and SU). The main outcome variables include the amount 
of variance explained by the first two PCs, the finger force 
loadings in the first two PCs, and the coefficients (ki and wi) 
in the cost function (J). For the sets of 20 repetitive trials 
for two {FTOT, MTOT} combinations, the following factors 
were used: Group, Moment, Finger, and Analysis (three 
levels: FTOT, MTOT, {FTOT, MTOT}).

Significant effects were further explored with Mann–
Whitney and Wilcoxon’s signed-rank tests with Bonferroni 
p value adjustments for multiple comparisons. Prior to sta-
tistic comparisons, variables with computational bounda-
ries were transformed using Fisher’s z-transformation 
adjusted to the boundaries of each variable. In addition, 
Mauchly’s sphericity test was used to confirm the assump-
tions of sphericity, and the Greenhouse-Geisser criterion 
was used to reduce the number of degrees of freedom if the 
sphericity assumption was violated. The level of signifi-
cance was set at p < 0.05.

Results

Principal component analysis

The PCA was the first step in the application of the ANIO 
method. PCA was performed on the sets of 81 finger force 
combinations (see “Methods” section) in each subject, 
which covered a broad range in the {FTOT, MTOT} task 

(11)∆V =
VUCM − VORT

VTOT

,
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space. The percentage of the total variance explained by the 
first two PCs was significantly larger for the CS group (CS: 
mean 85.1 %; range 92.1–72.0 %) as compared to the PD 
group (PD: mean 78.0 %; range 84.6–61.1 %), which was 
confirmed by the Mann–Whitney tests (p < 0.05).

The loadings of all four finger forces in PC1 were posi-
tive, while the loadings for the M and R finger forces were 
larger than those for the I and L fingers for both groups 
(Fig. 2). In PC2, both groups showed negative loadings for 
the I and M finger forces and positive loadings for the R and 
L finger forces. For the CS group only, the absolute magni-
tudes of loadings of the lateral finger forces (I and L finger 
forces) were larger than those of the central finger forces  
(M and R finger forces). These findings were supported by 
two-way repeated measure ANOVAs on z-transformed abso-
lute magnitudes of the PC loadings with factors Finger (four 
levels: I, M, R, and L) and Group (2 levels: PD and CS). The 
main effect of Finger was significant on both PC1 and PC2 
loadings (F[3,42] = 10.84, p < 0.001 for PC1; F[3,42] = 7.59, 
p < 0.01 for PC2). The Group × Finger interaction was sig-
nificant on PC2 loadings (F[3,42] =  4.04, p < 0.05), which 
reflected the fact that the absolute values of the loadings for 
the I and L finger forces were higher than the loadings for 
the M and R finger forces for the CS group only (p < 0.05). 
In addition, post hoc comparisons confirmed that I, L < M, R 
in the PC 1 finger force loadings (p < 0.05).

Results of the ANIO analysis

Based on the outcome of PCA, we assumed that 
the cost function was quadratic with linear terms: 
J = 1

2

∑

i ki · F2
i +

∑

i wi · Fi (see “Methods” section; 
Terekhov et al. 2010). The coefficients at the quadratic (ki) 
and linear terms (wi) were computed to provide the best fit 
for the experimental data for each subject separately. The ki 
coefficients were positive for all subjects. This observation 

confirms the applicability of the ANIO approach (Terekhov 
et al. 2010; Terekhov and Zatsiorsky 2011).

Overall, the second-order coefficients (ki) for the central 
finger forces (kM and kR) within the CS group were larger 
than those in the PD group (p < 0.05, Mann–Whitney tests), 
while kI and kL were larger than kM and kL (p < 0.05, Wil-
coxon’s signed-ranks tests) for both groups (Fig. 3). There 
was no significant difference in the first-order coefficients 
between the CS and PD groups (Fig. 3). The coefficients at 
the linear term (w) for the lateral finger (wI and wL) forces 
were negative, while the linear coefficients of the central 
finger forces (wM and wR) were positive in both groups.

The cost function J was further used to compute fin-
ger forces for the same range of tasks as those used in the 
experiment for each subject separately. The computed data 
formed a plane (the plane of optimal solutions) in the four-
dimensional finger force space. The average angle between 
the plane of optimal solution and the plane of experimen-
tal observations (D-angle) in the CS group (4.43° ± 1.85°) 
was smaller than that in the PD group (10.72°  ±  3.00°) 
(p < 0.05, Mann–Whitney test).

Analysis of variance structure

The framework of the UCM hypothesis was used to com-
pute two components of finger force variance (VUCM and 
VORT) with respect to stabilizing FTOT, MTOT, and their 
combinations, {FTOT, MTOT}, separately. Across all analy-
ses and subjects, VUCM > VORT (Fig.  4). This implies that 
most variance in the finger force space was compatible 
with average across trial values of the performance vari-
ables (FTOT, MTOT, or {FTOT, MTOT}) for both groups. In 
other words, there were multi-finger synergies stabilizing 
the performance variables.

We performed analyses of the two variance components 
(VUCM and VORT) and the synergy index (ΔV) to explore the 
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effects of PD on stabilization of total force, total moment 
of force, and their combination. There was no significant 
difference in VUCM magnitudes between the PD and CS 
groups, although, across all analyses, the average amount 
of VUCM for CS was slightly larger than for PD (by about 
14 %, Fig. 4a). In contrast, VORT for the PD group was sig-
nificantly larger than that for the CS group (by about 160 %, 

Fig.  4b). The group difference in VORT was significant for 
the FTOT and {FTOT, MTOT} analyses; it was smaller (under 
the significance level) for the MTOT analysis. Taken together, 
these results mean that the relative amount of variance that 
affected performance variables was larger in the PD group.

There were also differences common for the two groups 
in the variance indices across the two conditions (different 
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directions of the moment of force) and three analyses (with 
respect to FTOT, MTOT, and {FTOT, MTOT}). In particular, 
for both groups, VUCM for {FTOT, MTOT} was larger than 
VUCM computed for FTOT and MTOT separately. In addi-
tion, VORT during the SU tasks was larger than during the 
PR tasks. ANOVAs with factors Group (2 levels: PD and 
CS), Moment (2 levels: PR and SU), and Analysis (3 lev-
els: FTOT, MTOT, and {FTOT, MTOT}) were performed sep-
arately on VUCM and VORT. There was a main effect of 
Analysis for both VUCM and VORT (F[1.02,14.22]  =  18.09, 
p < 0.001 for VUCM; F[1,14] = 16.71, p < 0.001 for VORT). 
The main effects of Group and Moment were significant 
only for VORT (Group: PD > CS, F[1,14] = 6.49, p < 0.05; 
Moment: PR < SU, F[1,14] = 6.68, p < 0.05). There was a 
significant two-way Group × Analysis interaction for VORT 
(F[2,28] = 3.76, p < 0.05), which reflected the fact that the 
effect of Group on VORT (PD > CS) was significant only for 
the FTOT and {FTOT, MTOT} analyses.

The different effects of PD on VUCM and VORT were 
reflected in the group differences in the synergy index 
(ΔV). This index for the PD group was smaller than for 
the CS group, especially for the analyses of FTOT (ΔVF) 
and {FTOT, MTOT} (ΔVFM); there was no significant dif-
ference between the groups in ΔVM. In addition, ΔV dif-
fered between the three analyses (ΔVM  >  ΔVF  >  ΔVFM) 
and between the two moment directions (PR tasks  > S U 
tasks). These results are illustrated in Fig.  5. A three-
way repeated measures ANOVA with the factors 
Group (two levels), Moment (two levels), and Analysis 
(three levels) was performed on z-transformed ΔV val-
ues. The main effects of Analysis (F[1.02,14.31]  =  57.21, 
p < 0.001), Moment (F[1,14] = 15.41, p < 0.01), and Group 
(F[1,14] = 8.63, p < 0.05) were observed with a significant 
Analysis × Group interaction (F[2,28] = 3.53, p < 0.05). The 
pairwise comparisons confirmed that ΔVM > ΔVF > ΔVFM 
(p  <  0.001). The significant Analysis  ×  Group interac-
tion reflected that the PD group showed smaller ΔV with 

respect to FTOT and {FTOT, MTOT} as compared to the CS 
group (Mann–Whitney tests, p < 0.01), but not with respect 
to MTOT (ΔVM).

Discussion

The current study produced both expected and unexpected 
results. Our first hypothesis that patients would show sig-
nificantly smaller indices of multi-finger synergies com-
puted with respect to total force, total moment of force, and 
both combined was confirmed. These findings are a natural 
extension of an earlier study using accurate force produc-
tion trials in PD patients (Park et  al. 2012). The second 
hypothesis, however, was not supported by the observed 
data. PD subjects showed a much bigger difference than the 
control group in the indices of force-stabilizing synergies, 
while the differences for the moment-stabilizing syner-
gies were small and under the significance level. The third 
hypothesis that PD subjects would show lower consistency 
in following an optimization principle compared to an age-
matched control group was supported. These and other 
observations lead to a series of implications on the role of 
the basal ganglia in the organization of motor synergies as 
discussed below.

Motor synergies: definitions and mechanisms

Recently, the notion of synergy (including muscle syn-
ergy) has been used in two meanings. The more traditional 
approach defines synergies as correlated changes in a sub-
set of elemental variables (for example, muscle activations, 
joint trajectories, digit forces, etc.) over the time course of 
an action or over similar actions with different character-
istics (d’Avella et al. 2003; Ivanenko et al. 2004; Ting and 
Macpherson 2005). Within this definition, synergies have 
been identified and quantified using matrix factorization 

0.0

1.5

3.0 PD CS

PR SU PR SU PR SU

∆VF ∆VM ∆VFM

∆V
 (

z-
tr

an
sf

or
m

ed
)

Fig. 5   Z-transformed synergy 
indices, ΔV, computed with 
respect to FTOT (ΔVF), MTOT 
(ΔVM), and {FTOT, MTOT} 
stabilization (ΔVFM) for the PD 
(gray bars) and CS (white bars) 
groups. Average values across 
subjects are presented with 
standard error bars. PR and SU 
stand for pronation and supina-
tion, respectively. The asterisks 
show statistically significant 
differences between the PD and 
CS groups at p < 0.05



60	 Exp Brain Res (2013) 231:51–63

1 3

techniques such as factor analysis, independent component 
analysis, and non-negative matrix factorization (reviewed 
in Tresch et al. 2006). Several recent papers questioned the 
utility of the notion of muscle synergies defined in this way 
(Tresch and Jarc 2009; De Rugy et al. 2013).

A more recent, alternative definition has been developed 
based on the principle of abundance (Gelfand and Latash 
1998; Latash 2012). According to this approach, syner-
gies are defined in the space of elemental variables (finger 
forces in our study) as neural mechanisms that organize 
co-varied across repetitive trials changes in the elemen-
tal variables that stabilize (reduce variance of) potentially 
important performance variables (FTOT, MTOT, and {FTOT, 
MTOT}). This definition considers synergies as neural 
mechanisms with a specific purpose, i.e., to ensure the sta-
bility of action in the presence of secondary tasks that may 
involve the same elements and unexpected changes in the 
conditions (“perturbations”) (Scholz et  al. 2000; Zhang 
et al. 2008; Mattos et al. 2011). In our opinion, this defini-
tion creates a fruitful framework for analysis of the neural 
control of natural movements and its outcomes, and thus, it 
is more relevant to the functional changes associated with 
movement disorders.

Two aspects of synergies in the second definition typi-
cally are quantified, sharing and co-variation. Sharing 
reflects the average involvement of elemental variables 
across multiple repetitions of a task. These patterns have 
been shown to be consistent across ranges of performance 
variables (Li et  al. 1998; Danna-dos-Santos et  al. 2008). 
The other aspect reflects co-variation patterns in the space 
of elemental variables seen over individual trials at the 
same task. Sharing patterns commonly have been viewed 
as reflecting an optimization principle, and we used the 
method of ANIO to define cost functions for individual 
participants (Terekhov et  al. 2010). The patterns of co-
variation have been quantified using methods developed 
within the UCM hypothesis (Scholz and Schöner 1999; 
reviewed in Latash et al. 2002, 2007). Our results show that 
both methods are sensitive to quantify changes in motor 
coordination (reflected in the indices of the two aspects of 
synergies) in early-stage PD. These methods go beyond 
detecting changes in general movement patterns that are 
commonly used for clinical diagnosis of PD.

Note that having large amounts of variance compatible 
with a value of a performance variable (VUCM) leads to 
higher synergy indices but violates an optimization princi-
ple since by definition only one point within the UCM is 
optimal. As a result, there is an inherent trade-off between 
the two aspects, optimization, and strong synergies (Park 
et al. 2010). One of the main results of our study shows that 
stronger synergies do not necessarily mean lower consist-
ency in following an optimization principle; indeed, control 
subjects showed higher synergy indices and lower D-angle 

values. The dysfunction of the basal ganglia associated 
with PD had detrimental effects on both the consistency in 
following an optimization principle and the ability to sta-
bilize performance by structuring the variance within the 
space of commands to fingers.

A drop in the synergy index may be associated with an 
increase in VORT, a decrease in VUCM, or both. PD patients 
consistently showed unchanged values of VUCM and 
increased VORT across the two tasks and three analyses. 
This is not a trivial result. If one assumes that the general 
level of variability within the central nervous system is 
increased in PD (Contreras-Vidal and Stelmach 1996), an 
increase in both VORT and VUCM may be expected. It may be 
coincidental that the expected increase in VUCM was nearly 
perfectly balanced by the impaired ability to unite fingers 
into synergies (cf. Park et al. 2012). An alternative interpre-
tation is that having a certain amount of VUCM may be by 
itself a self-imposed constraint, and VORT is adjusted to the 
total amount of variance.

Within the definition accepted in this study, synergies 
have been described as products of an optimal feedback 
control scheme, a feed-forward scheme, a scheme with cen-
tral back-coupling loops, and a hierarchical scheme based 
on ideas of equilibrium-point control developed recently 
as the control with referent body configurations (Todorov 
and Jordan 2002; Goodman and Latash 2006; Latash et al. 
2005; Martin et al. 2009; Latash 2010). The latter approach 
views a sequence of few-to-many mappings organized in a 
synergic way with the help of back-coupling loops (as in 
Latash et  al. 2005). Within this scheme, relatively large 
variations in the elemental variables are allowed as long 
as the task-related performance variables remain relatively 
unchanged. At the lowest level of this hierarchy, the mech-
anism of the tonic stretch reflex unites motor units into a 
synergy stabilizing equilibrium state of the system “mus-
cle plus its reflex feedback loops plus external force.” The 
results of our study suggest that the cortico-basal-thalamo-
cortical circuit likely is involved in ensuring both consist-
ent patterns of the hypothesized few-to-many mapping 
(reflected in the higher D-angle values) and defining proper 
values of the gains in the back-coupling loops.

The role of cortical versus subcortical (cerebellar and basal 
ganglia) involvement in synergies

Traditionally, the neural mechanisms of synergies have 
been associated with cortical motor areas and the cerebel-
lum. The hypothesis on the involvement of the cerebellum 
dates back to the classical studies by Felix Babinski (Smith 
1993). More recently, studies on monkeys have suggested 
that signals from the dentate nuclei are more closely related 
to control of muscle synergies rather than prime movers 
of the explicitly required action (Thach et  al. 1992; also 



61Exp Brain Res (2013) 231:51–63	

1 3

see Rispal-Padel et al. 1981). A few studies have provided 
rather direct physiological evidence for a role of the cer-
ebellum in coordinating a variety of multi-joint actions. 
In one of those studies, PCA of the activity patterns of a 
large set of neurons within the dorsal spinocerebellar tract 
was performed during hindlimb motion simulating walking 
(Bosco and Poppele 2002). The two PCs that accounted for 
most of the variance of the neuronal activity were related 
not to individual joint movements, but to the whole limb 
length and orientation changes during the leg movement 
cycle, which can be considered important performance 
variables for locomotion stabilized by co-varied joint 
rotations.

Studies of cortical neuronal populations also have 
revealed patterns of activity related to global performance 
variables such as the spatial trajectory of the effector’s end-
point or the force vector applied by an end-effector rather 
than to activations of specific muscles (Georgopoulos et al. 
1982; Schwartz 1993; Coltz et al. 1999; Cisek and Kalaska 
2005). Studies of the cortical control of the human hand 
have resulted in a hypothesis that has direct relevance to 
the topic of synergies (Schieber and Santello 2004). Marc 
Schieber synthesized these observations and suggested 
an idea of a cortical piano (Schieber 2001; Schieber and 
Rivlis 2007). This idea implies that individual cortical neu-
rons are similar to piano keys, while functional movements 
involve “playing chords.” In other words, neurons may be 
united functionally in groups that are used flexibly to pro-
duce desired motor effects.

Note, however, that the mentioned studies used the 
notion of synergy loosely and did not quantify synergies 
within the principle of abundance. A study by Reisman 
and Scholz (2003) questioned the importance of the cor-
tex for synergies. The study showed that whereas patterns 
of reaching movements by stroke survivors performed by 
the contralesional arm were significantly impaired, the 
structure of joint configuration variance was not different 
between movements performed by the ipsilesional (less 
impaired) and contralesional arms. The total amount of 
joint configuration variance was increased during reach-
ing movements by the contralesional arm, but the relative 
amount of VUCM was unchanged. These observations are in 
stark contrast to our findings in the studies of patients with 
early-stage PD (see also Park et al. 2012). The PD patients 
showed relatively mild changes in the general characteris-
tics of performance, whereas the structure of variance was 
changed significantly. Changes in the indices of multi- 
finger synergies could even be significant in the apparently 
unaffected hands of PD patients (HY stage I; Park et  al. 
2012).

The changes in both aspects of synergies, optimization, 
and structure of variance observed in the current study 
may reflect either the importance of the basal ganglia for 

synergies or the involvement of other brain structure such 
as the cerebellum in PD. The basal ganglia have been 
implicated in uniting the postural and locomotor syner-
gies (Mori 1987) and in the grasp-lift synergy (Forssberg 
et  al. 1999), but in those studies, synergies were defined 
in the traditional way as proportional changes within a set 
of elemental variables. Several recent brain-imaging stud-
ies have suggested cerebellar involvement in PD (Lewis 
et al. 2007, 2011; Yu et al. 2007; Wu et al. 2011). In par-
ticular, weakened striatum-cerebellar connections have 
been documented (Wu et  al. 2011) possibly related to 
problems with action initiation. It is feasible that some 
of the changes in synergy characteristics observed in our 
study reflect changes involving both the basal ganglia and 
the cerebellum. This assumption is supported by a recent 
study of patients with multisystem atrophy–cerebellar type 
(Park et  al. 2013) that has shown changes in multi-finger 
synergies qualitatively similar to those described in the cur-
rent study. Whether effects of PD on synergies are due to 
the primary problem with the basal ganglia or secondary 
involvement of the cerebellum, our observations provide 
strong support for the crucial role of subcortical struc-
tures in multi-finger synergies that have traditionally been 
viewed as an example of a high-level cortical coordination.

Clinical implications

PD is diagnosed clinically by the presence of resting 
tremor, rigidity, and bradykinesia. It is known that more 
than 50–80  % of dopaminergic neurons in the substantia 
nigra of the basal ganglia already are lost at the time of 
diagnosis using these criteria. Changes in motor coordina-
tion are not mentioned explicitly among the cardinal signs 
of PD. This study, together with our earlier observations 
on multi-finger coordination in PD patients, suggests that 
changes in multi-finger synergies may be an early, objec-
tive, reliably detectable sign of this disorder. This hypoth-
esis is supported by the fact that significant changes in  
synergy indices can be seen in the asymptomatic hands of 
PD patients at HY stage I (Park et al. 2012).

The observation of decreased synergy index values 
and increased magnitudes of the D-angle are qualitatively 
similar to earlier reports on the changes in the two aspects 
of synergies that accompany healthy aging (Park et  al. 
2011a) and fatigue of the index finger in young healthy 
persons (Park et al. 2011b). Across all comparisons, there 
was a drop in the synergy index and an increase in the 
D-angle reflecting a drop in consistency in following an 
optimization principle. Because the origins of the subopti-
mal motor performance are very different across the three 
comparisons, the similarity of the effects on optimization 
and structure of variance suggests that these effects may 
reflect similar adaptive changes within the central nervous 
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system due to aging, fatigue, and neurological disorders. 
Since it is known that there is decreasing dopamine con-
tent in the brain that occurs with normal aging (Bäckman 
et  al. 2006; see also Chowdhury et  al. 2013), it would 
be very interesting to investigate the role of nigrostriatal 
dopaminergic changes in age-and fatigue-related synergy 
changes.

Using a set of single trials for the ANIO analysis may 
be viewed as a drawback of the study. We would like to 
emphasize, however, that the tasks were very simple and, 
after a brief familiarization process, all subjects felt com-
fortable performing them. So, we do not expect the lack of 
extensive practice to be an important factor affecting the 
reconstructed objective functions. Note also that a recent 
study explored robustness of objective functions recon-
structed with ANIO in young, healthy subjects and showed 
no major changes in those functions over repetitive tests on 
three days (Niu et al. 2012).
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